www.magicrete.in

Waste to Value Pathways in India: Solutions for Circular-Economy Driven Net Zero Transitions

About Magicrete

Ash circularity and net zero

WHO WE ARE ?

"We help people build their homes **better, faster and cheaper** by using innovative construction technologies".

The largest manufacturer of AAC Blocks in India (installed capacity of **13,00,000CBM/annum**) near high growth markets of West and North

Seven lacs+ homes built over the past decade using Magicrete products.

Motilal Oswal Private Equity (2013) & India SME (2023) invested in Magicrete.

WHAT WE DO?

• AAC BLOCKS

• WALL PUTTY

- AAC WALL PANELS
- BLOCK JOINING MORTAR
- READYMIX PLASTER

- TILE & STONE ADHESIVES
- EPOXY & CEMENTITIOUS GROUTS
- TILE & STONE CARE
- WATERPROOFING

- PRECAST BUILDING SYSTEM
- PRECAST INFRASTRUCTURE PRODUCTS

WHY MAGICRETE ?

BEST IN CLASS PRODUCTS

First AAC Company to provide

complete Walling Solution

<u> O</u>

ISI Marked

- Grade 1 Material
- Material, 33% Higher Strength
- ((•)) Range of Products

WORLD CLASS INFRASTRUCTURE

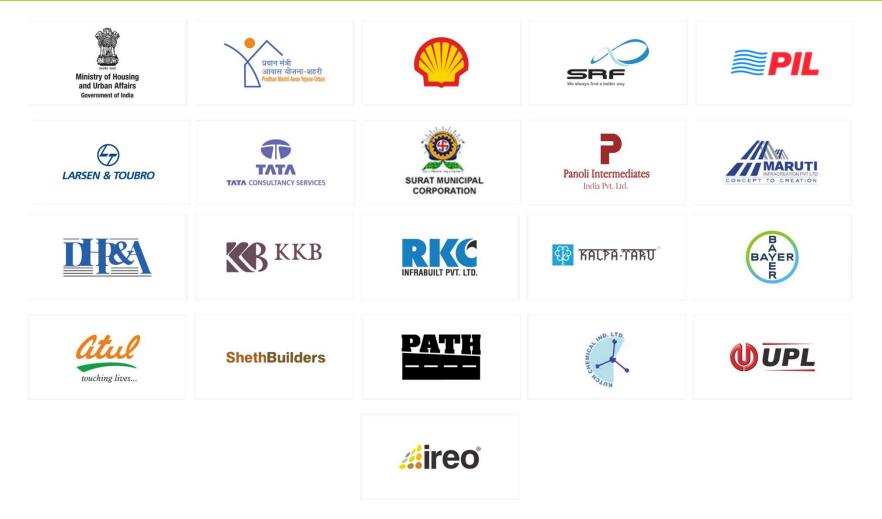
Present in **18 states**, top **120 Indian Cities** through more than **5000** retail outlets.

Operational excellence achieved through **TPM**, use of **BSC** as a strategic tool, and **SOP** driven systems.

India's top AAC players with **13,00,000 CBM** annual installed capacity.

Strategically located within 250kms of major urban centres and thermal power plants.

Our Manufacture Unit – Jhajjar Plant

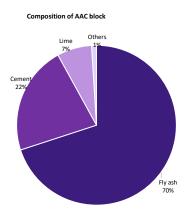


Our Manufacture Unit – Navsari Plant

ESTEEMED CLIENTELE

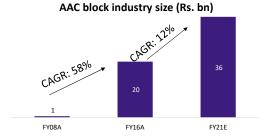
About Magicrete

Ash circularity and net zero



Industry Overview : AAC Blocks

magicrete


Introduction to AAC Blocks

- Autoclave Aerated Concrete (AAC) block is a better and cost effective substitute for clay bricks
- AAC is a steam cured cement product made from a mix of pulverized fly ash, cement, lime, gypsum and an aeration agent which gives it the porous, honeycomb structure

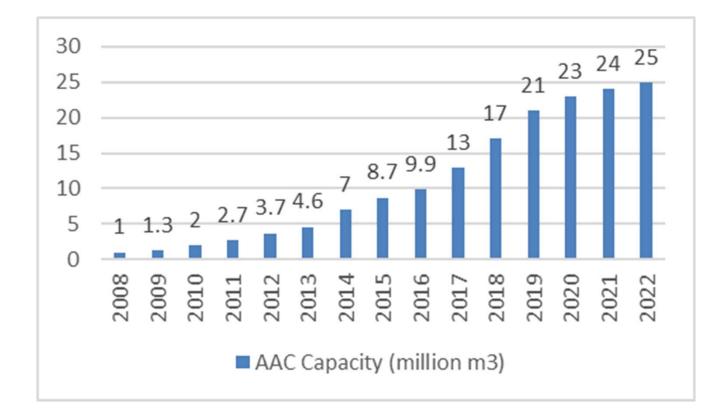
Market size

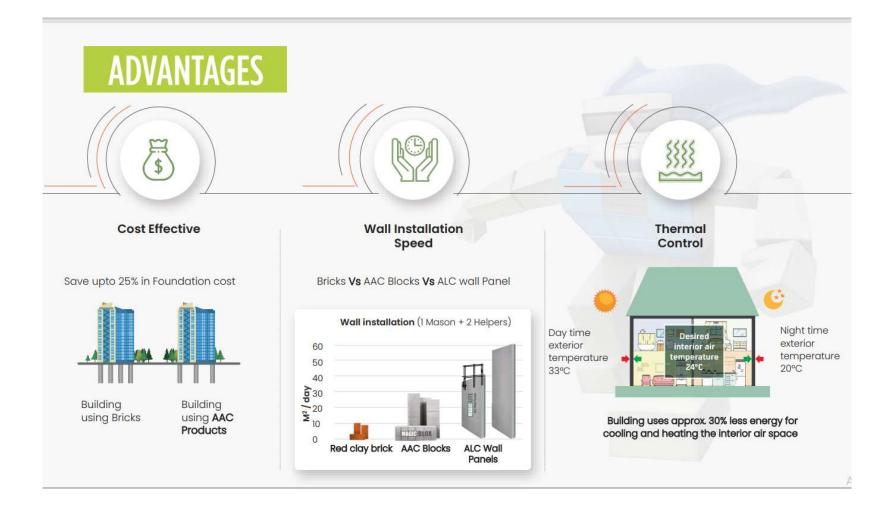
- Indian construction industry: Market size estimated at Rs. 10 tn (FY15), of which market for bricks is estimated at ~Rs. 600 bn
- Clay bricks form ~83% of the market and AAC blocks account for 6%. Rest is fly ash bricks (~7%) and concrete blocks (~4%)

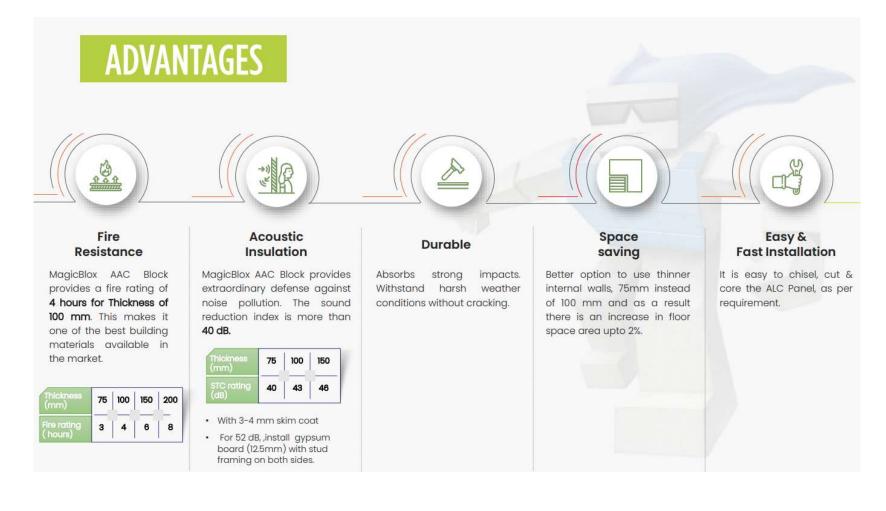
Private & Confidential **10**

BRICK VS BLOCK WALL COMPARISION FOR 100 SQFT. 4" THICK WALL

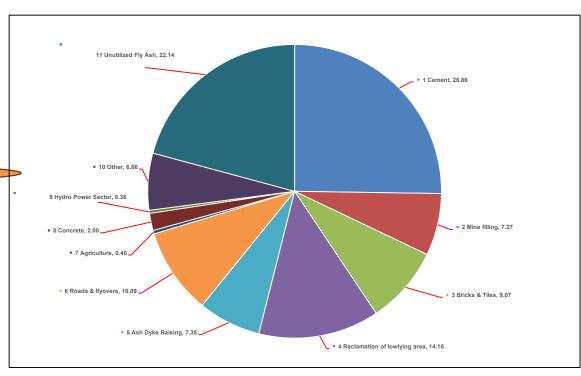
			and the second s	
	- Start I	The of		
-	-		-	1
	1			
_			-	


BRICK WALL				
	QUANTITY	RATE/UNIT	AMOUNT	
Bricks	500	8.5	4,250	
Mortar	2.25 cement bags	330	742.5	
	10 CFT Sand	50	500	
Plaster	4 Bags Cement	330	1,320	
(2 Coat: 20mm)	16 CFT Sand	50	800	
Total Walling Cost			7,612.5	
	Cost per Sqft		76.125	


BLOCK WALL				
	QUANTITY	RATE/UNIT	AMOUNT	
Bricks	56	51	2,856	
Mortar	0.54 Bag	450	243	
Plaster	4 Bags Cement	330	1,320	
(2 Coat: 20mm)	16 CFT Sand	50	800	
Total Walling Cost			5,219	
	Cost per Sqft		52.19	


Activate Wind

Growth in AAC Industry in India



Thermal Power Plant Ash Utilization Mode

Mode of Fly Ash Utilization During the 1st half of the Year 2020-21				
SI.	Mode of utilization	Quantity of Fly Ash utilized in the mode of Utilization		
		Million Tonnes	Percentage %	
1	Cement	26.86	25.25	
2	Mine filling	7.27	6.84	
3	Bricks & Tiles	9.07	8.53	
4	Reclamation of lowlying area	14.16	13.31	
5	Ash Dyke Raising	7.35	6.91	
6	Roads & flyovers	10.09	9.49	
7	Agriculture	0.40	0.38	
8	Concrete	2.00	1.88	
9	Hydro Power Sector	0.36	0.34	
10	Other	6.66	6.26	
11	Unutilized Fly Ash	22.14	20.82	
	Total	106.37	100	

- Magicrete has consumed nearly 3 million tons of fly ash (producing more than 6 million cubic meters of AAC)
- With annual production of nearly 1 million cubic meters annually now, we will consume
 0.5 million tons of fly ash annually
- OUR RENEWABLE ENERGY RESOURCE IS SOLAR
- BIOMASS IS OUR MAIN RAW FUEL SOURCE FOR BOILER OPERATION

OUR BIT FOR ENVIRONMENT

Fly Ash Consumption: 25,69,103 MT +	CO ₂ Emission Averted: 60 lacs MT +
Energy Consumption:	Coal Saved:
1,083 MW +	21,76,872 MT +

Soil Erosion Prevented: 60,85,823 CBM +

www.magicrete.in

THANK YOU

Magicrete Building Solutions Pvt Ltd Sidharth Bansal

